機械学習

スパース(疎)なデータを非スパースに変換して、XGBoostを高速化

機械学習のモデルを作るときは、とりあえずXGBoostにしとけばよいでしょっていうぐらい、XGBoostが優秀です。ただし、XGBoostはある程度の精度のモデルを何も考えずに構築できる反面、他の機械学習モデルよりは実行時間が長くなります。モデルの学習時間が長…

Pythonを使ってロジスティック回帰の限界効果を求める

私の座右の銘は「限界突破」でした。それは、自分が想像できる範囲の自分で決めた限界を乗り越えることに喜びを覚えていたわけです。まるで、判別境界を少しでも超えたらその瞬間に異なるクラスに振り分けられるように、設定した”限界”を超えた瞬間に突破と…

XGBoostのアルゴリズムを論文を読んで解説

夕焼けと紅葉が同化するような季節になると、毎日の服選びに時間がかかるように、ほんの少し昔に遡ると、機械学習のアルゴリズムを何にするかは迷いの種でした。ところが、今や機械学習のご意見場的な立ち位置になったXGBoostが現れてかららは、XGBoostをと…

Pythonでトピックモデル Word Cloud と LDA

SNSがコミュニケーションのインフラになりつつあることで、世の中は言葉で溢れています。この膨大な言葉の文章をまとめることで一つ一つの文章からはわからない傾向を新たに獲得することができます。具体的には、文章をカテゴライズして分類することで、どの…

Pythonでクラスタリング k-meansからk-medoidsを改良する

今回は、答えのないデータから、データの構造を見えるようにするクラスタリングについて述べていきます。クラスタリングとは、データが似ているものを一つのクラスタにまとめて情報を集約することによって、見通しを良くするものです。例えば、人の特徴を一…

Pythonを使って変数選択!

機械学習はデータが命です。データが精度を左右するので、精度を上げるためにデータを増やし、変数をどんどん追加してくという方向になりがちです。しかし、変数の数を多くすると、計算時間の増加をまねいたり、特定のクラスの一部のデータの影響で過学習し…

機械学習の分類結果を可視化!決定境界

学習した機械学習のモデルが与えたデータに対してどのように分類したかを知りたいことは多いです。ここら先は違うクラスになるという境界がわかられば、分類モデルの理解が深まりますし、改善ポイントもわかるようになります。学生の頃に隣のクラスになろう…

Pythonで機械学習をやってみる!複数回試行での評価

前回以下のエントリを書きました。そのエントリでは複数の機械学習のアルゴリズムの正答率を比較しましたが、1回の試行だけだったので複数回試行の結果でアルゴリズムを評価したいと思います。(*前回行った学習を複数回に拡張しただけです。) dskomei.hat…

Pythonで機械学習をやってみる!

本エントリはとにかく機械学習をやってみたいという思いだけで突っ走って書きました。機械学習をしてドヤりたい人、色々アルゴリズムがあるのは知っているけど実際どうやるんだっけという人向けになっていると思います。理論より実践!!という感じなので玄人…