時系列分析

Pythonを使って時系列データを予測する状態空間モデルの実装 〜トレンド、季節周期、自己回帰を状態とする線形ガウスモデル〜

状態空間モデルは、観測できない状態を推定し、その推定した状態から観測値を予測するモデルです。観測できない状態の形を指定できるため、季節周期やトレンドを表す状態のモデルを構築でき、それぞれの成分に分解できます。これにより、ブラックボックスに…

Pythonを使って多変量時系列データの予測における変数の関係性を分析 〜予測誤差分散分解〜

現在、データを取得しやすくなったことで、多変量の時系列データも増えてきました。多変量時系列データを扱う上で、1変数ずつ見ていくのでもよいのですが、せっかく多変量あるならば、多変量ならではの示唆を得たいですよね。そこで今回は、多変量時系列デー…

Pythonを使ってVARモデルにおける多変量時系列予測モデルの構築

世の中には色んな種類のデータがあり、売上の推移であったり、勉強へのモチベーションの移り変わりであったりといった、数字の並び順自体に意味があるデータがあります。この数字の並び順自体に意味があるデータは時系列データと呼ばれます。時系列データは…